Data Life Cycles in Future Residential Multi-Commodity Energy Management Systems

Fabian Rigoll, Christian Gitte, and Hartmut Schmeck Karlsruhe Institute of Technology (KIT), Germany *Great Lakes Symposium 2014, 25th September 14* Supported by

Karlsruhe Institute of Technology: The Merger of National **Research Center Karlsruhe and Karlsruhe University**

Source: KIT, 01/2014

Employees

24.

359

Professors

Students

Annual Budget in Million Euros

Energiewende – A Large Project for Future Generations

Political Agenda in Germany

- Ambitious goals
 - 30% renewables by 2020,
 - 50% by 2030,
 - 80% by 2050
- Nuclear phase out

Technical Implementation

- More renewables
 - → Load shifting necessary
 - → More storage
 - → Flexible gas-fired power plants
 - → Demand side management
- Decentralized generation

Our Focus

 Demand side management in residential buildings

Copyright Fox Entertainment

Motivation: Future Multi-Commodity Residential Homes

Classic Independent Mode of Device Control

Motivation: Future Multi-Commodity Residential Homes

Single-Commodity Optimization Mode of Device Control

Motivation: Future Multi-Commodity Residential Homes

Multi-Commodity Optimization Mode of Device Control

Problems

- Various data sources and data sinks
- Interleaved data flows
- Complex control and optimization tasks

Exemplary use case: "Senertec Dachs"

- Residential home
- Micro combined heat and power
 - Otto generator using natural gas
 - Cogeneration of heat and electricity
 - Warm water storage

with additional electrical heating

→ Hybrid heating by natural gas or electricity

Approach

- Data life cycle analysis
- Role model of acting entities

Power & Energy Society

Data Life Cycle Analysis

A Prototype Data Life Cycle

- A tool to gain better understanding of data life cycles
- Not necessarily a straight-forward cycle

Role Model Based on European Energy Legislation

User of electricity and heat

Pays the bill

Owns personalized data

Operator of the distribution grid

Design of tariffs

Billing

Specialisation:

Operator of electricity distribution grid

Operator of natural gas distribution grid

Supplier of energy

Voltage Control

Congestion Management

Specialisation:

Supplier of electricity

Supplier of natural gas

Responsible for imbalance settlement

Application of Demand Side Management (electricity only)

Role Model

Legitimate Interest in Data

	Customer	DSO	Retailer	BRP
Metering data	X	X	X	X
Billing data	X	X	X	
Operational data	X	X		
Contractual data	X		X	X

Data Life Cycle Analysis

Interleaved Data Life Cycles

Resulting Big Picture of Data Life Cycle Analysis

Power & Energy Society

Resulting Big Picture of Data Life Cycle Analysis (Part 1)

Resulting Big Picture of Data Life Cycle Analysis (Part 2)

Lessons Learned

- The energy transition is a large project for future generations
- Data flows and data life cycles in multicommodity scenarios are complex
- Systematic approaches are needed, in order to reduce this complexity
- Data life cycle analyses can be employed to gain a better understanding
- Scenarios should be divided into several use cases

Data Life Cycles in Future Residential Multi-Commodity Energy Management Systems

Fabian Rigoll, Christian Gitte, and Hartmut Schmeck Karlsruhe Institute of Technology (KIT), Germany rigoll@kit.edu / gitte@kit.edu / schmeck@kit.edu

Thank you for your kind attention! Feedback? Questions?

Supported by

Backup Slides

KIT: 30 Fields of Competence Bundled in 6 Areas of Competence

Matter and Materials

Elementary Particle and Astroparticle Physics

Condensed Matter

Nanoscience

Microtechnology

Optics and Photonics

Applied and New Materials

Earth and Environment

Atmosphere and Climate

Geosphere and Risk Management

Hydrosphere and Environmental Engineering

Buildings and Urban Infrastructure

Applied Life Sciences

Biotechnology

Toxicology and Food Science

Health and Medical Engineering

Cellular and Structural Biology

Systems und Processes

Flow and Particle Dynamics

Chemical and Thermal Process Technology

Fuels and Combustion

Systems and Embedded Systems

Power Plant Technology

Product Life Cycles

Mobile Systems and Mobility

Information, Communication, and Organization

Algorithms, Software, and Information Science Systems

Cognitive Systems and Information Processing

Communication Technology

High-performance Computing and Distributed

Systems

Mathematical Models

Organization and Service Design

Technology, Culture, and Society

Cultural Heritage and Social Change Economic Organization and Innovation Interaction of Science, Technology, and Society

KIT Centers: Focus on Topics, Strategic Research Planning

- Climate and Environment
- Energy
- Materials, Structures, Functions (former KIT Center NanoMicro and KIT Focus Optics and Photonics)
- Elementary Particle and Astroparticle Physics
- Climate and Environment
- Mobility Systems
- Information, Systems, Technologies (former KIT Focuses COMMputation and Anthropomatics and Robotics)
- Humans and Technology

Add-On Heating Element

Abb. 16: Anschluss für Heizstab am Pufferspeicher

Source. Cf. Technical Manual Senertec Dachs

Abb. 17: Montage - Heizstab am Pufferspeicher

Betriebsarten Heizstab				
Betrieb	Leistung	Sicherung im Heizstabschaltkasten		
3-phasig	5,5 kW	F1, F2, F3 ein		
2-phasig	ca. 3,6 kW	F2 oder F3 aus		
1-phasig	ca. 1,8 kW	F2 und F3 aus		

Abb. 15: Abbildung und Leistungsdaten - Heizstab